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The following is based partly on past works with Russell
Schwab and with Jun Kitagawa

(both currently at Michigan State, coincidentally)



Two results
1.A nonlocal Aleksandrov-Bakelman-Pucci estimate

Consider the elliptic integro-differential equation

Lu(x) :=

∫
Rd

(u(x+ h)− u(x))(A(x)ĥ, ĥ)|h|−d−α dh

where α ∈ (0, 2), A(x) ≥ 0 and tr(A(x)) ≥ λ for all x, and

ĥ :=
h

|h|



Two results
1.A nonlocal Aleksandrov-Bakelman-Pucci estimate

Given a function φ : Rd → R and α ∈ (0, 2), define

Hαφ(x) = C(d, α)

∫
Rd

(φ(x+ h)− φ(x))ĥ⊗ ĥ|h|−d−α dh

This we will refer to as the Fractional Hessian of order α.(
Observe that lim

α→2
Hαφ(x) = D2φ(x) +

∆φ(x)

d+ 2
I

)



Two results
1.A nonlocal Aleksandrov-Bakelman-Pucci estimate

The operator Lu(x) can be written as

tr(A(x)Hαu(x))

which one should think about as a (poor) non-local imitation of

tr(A(x)D2u(x))



Two results
1.A nonlocal Aleksandrov-Bakelman-Pucci estimate

A function φ will be said to be α-convex in D, if

Hαφ(x) ≥ 0 ∀ x ∈ D,

It is not difficult to see the maximum of two α-convex functions
is still convex.



Two results
1.A nonlocal Aleksandrov-Bakelman-Pucci estimate

For u : Rd → R non-negative outside D we consider,

φu(x) = max{φ(x) | φ ≤ u and φ is α-convex in D}

this we will call the α-convex envelope of u.



Two results
1.A nonlocal Aleksandrov-Bakelman-Pucci estimate

Theorem (G.-Schwab, 2012)

Suppose that Lu(x) ≤ f(x) in D, u ≥ 0 in Rd \D. Then

‖u−‖L∞(D) ≤ C(D,λ, α)‖f‖
2−α
2

L∞(Γα,u)‖f‖
α
2

Ld(Γα,u)

where Γα,u = {x ∈ D | u = φu}, the contact set of u and φu.



Two results
2.An Aleksandrov estimate for c-convex functions

For a Riemannian manifold M , define the quadratic cost

c(x, y) = 1
2d(x, y)2

A function φ : M → R is said to be c-affine if

φ(x) = −c(x, y0) + α0

for some y0 ∈M and some α0 ∈ R.



Two results
2.An Aleksandrov estimate for c-convex functions

A function which is the supremum of a family of c-affine
functions will be called c-convex

φ(x) = sup
i
{−c(x, yi) + αi}

If u is c-convex, its subdifferential at x is defined as

∂cu(x0) := {y | ∃ α s.t. u(x) ≥ −c(x, y) + α ∀ x
u(x0) = −c(x0, y) + α }



Two results
2.An Aleksandrov estimate for c-convex functions

Problem: Determine the class of costs for which an estimate of
the following type holds

‖(u− φ)−‖L∞(D) ≤ C|D|
1
d |∂cu(D)|

1
d



Two results
2.An Aleksandrov estimate for c-convex functions

Theorem (Figalli-Kim-McCann 2013, G.-Kitagawa 2014)

Essentially, the costs for which the above estimate holds are
those satisfying the A3w condition of Ma-Trudinger-Wang.



Two results

These seemingly unrelated results are different generalizations
of one of the most consequential (and in my opinion, most
underrated) facts in convex geometry, the Aleksandrov estimate.



This talk

1. What is the Aleksandrov estimate?

2. Two illustrations of the Aleksandrov estimate
• Uniformly elliptic operators with rough coefficients
• C1,α theory for the real Monge-Ampère equation

3. Theories that could use an Aleksandrov-type estimate

4. New Aleksandrov-type estimates
• In optimal transport and geometric optics
• In integro-differential equations

5. A non-local Jacobian equation (if there is time)



1. What is the Aleksandrov estimate?



The Aleksandrov estimate

Theorem (Aleksandrov)

Given a convex body D and h : D → R convex with h |∂D= 0,

‖h‖L∞(D) ≤ Cd|D|
1
d |∇h(D)|

1
d



The Aleksandrov estimate
The (reverse) Blashcke-Santaló inequality

For a convex set D ⊂ Rd its polar dual is the set

D∗ = {y ∈ Rd | x · y ≤ 1∀ x ∈ D}



The Aleksandrov estimate
The (reverse) Blashcke-Santaló inequality

Theorem (Blashcke-Santaló)

If the center of mass of D is at the origin, then

|D||D∗| ≥ cd

for some dimensional constant cd.



The Aleksandrov estimate
The (reverse) Blashcke-Santaló inequality

If h is convex, h = 0 on ∂D, and h = −1 at xc = center of D,

∇h(D) = D∗



The Aleksandrov estimate

If h : D → R is a convex function and h = 0 on ∂D, then

‖h‖L∞(D) ≤ Cd|D|
1
d |∇h(D)|

1
d



The Aleksandrov estimate

If h is twice differentiable, then

|∇h(D)| =
∫
∇h(D)

dx =

∫
D

det(D2h) dx

Therefore,

‖h‖L∞(D) ≤ Cd|D|
1
d

(∫
D

det(D2h) dx

) 1
d



The Aleksandrov estimate

This estimate is essential for the folowing theorems. . .

• The Krylov-Safonov estimates for non-divergence equations

tr(A(x)D2u) = f ⇒ ‖u‖Cα ≤ C(‖u‖L∞ , A, f)

• The Evans-Krylov theorem for convex elliptic equations

F (D2u) = f ⇒ ‖u‖C2,α ≤ C(‖u‖L∞ , F, f)

• Caffarelli’s estimates for optimal transport maps in Rn

det(D2u(x)) =
f(x)

g(∇u(x))
⇒ x+∇u(x) is Cα and injective



The Aleksandrov estimate

. . . also essential for these theorems

• Stroock and Varadhan’s solution of the Martingale problem

• Nirenberg-Varadhan Strong maximum principles

• Caffarelli’s W 2,p estimates for fully nonlinear equations

• Stochastic homogenization
(Caffarelli-Souganidis-Wang, Armstrong-Smart, Schwab)



2. Two illustrations of the Aleksandrov estimate



Two illustrations of the Aleksandrov estimate

1. Uniformly elliptic operators with rough coefficients
2. C1,α theory for the real Monge-Ampère equation



Two illustrations of the Aleksandrov estimate
1. Uniformly elliptic operators with rough coefficients

Consider a domain D ⊂ Rd and an operator

Lu(x) = tr(A(x)D2u(x))

where A(x) is a diffusion matrix in D, meaning A(x) is
symmetric and there is λ > 0 such that

A(x) ≥ λI ∀ x



Two illustrations of the Aleksandrov estimate
1. Uniformly elliptic operators with rough coefficients

Lu(x) = tr(A(x)D2u(x))

If A(x) is Hölder continuous, then for any p > d/2 we have{
Lu = f in D
u = 0 on ∂D

⇒ ‖u‖L∞(D) ≤ C(A,D, p)‖f‖Lp(D)

Here, in fact, we have C(A,D, p) = C(λ, ‖A‖Cα , α,D, p)



Two illustrations of the Aleksandrov estimate
1. Uniformly elliptic operators with rough coefficients

What about nonlinear elliptic equations?

Consider a family of matrices {Ai}i such that Ai ≥ λI.
The Bellman operator associated to this family is defined by

F (D2u) = inf
i
{tr(AiD2u)}



Two illustrations of the Aleksandrov estimate
1. Uniformly elliptic operators with rough coefficients

If u solves F (D2u) = f(x), then one may consider

A(x) := Ai(x), i(x) := argmin{i→ tr(AiD
2u(x))}

One expects u to also solve the linear equation

tr(A(x)D2u(x)) = f(x)

A priori all we know about A(x) is that A(x) ≥ λI for all x.



Two illustrations of the Aleksandrov estimate
1. Uniformly elliptic operators with rough coefficients

An important fact about PDE has been recognized since at
least the time of De Giorgi’s and Nash’s independent solutions
of Hilbert’s 19th problem.

Namely:

Any scalar solving a nonlinear PDE solves a linear
PDE with potentially discontinuous coefficients



Two illustrations of the Aleksandrov estimate
1. Uniformly elliptic operators with rough coefficients

div( 1√
1+|∇u|2

∇u) = 0

det(D2u) = 1

inf
A∈C

tr(AD2u) = f



Two illustrations of the Aleksandrov estimate
1. Uniformly elliptic operators with rough coefficients

Question
If we are given A(x), and u solving

tr(A(x)D2u(x)) = f in D, u = 0 on ∂D

Is there an estimate of the form

‖u‖L∞(D) ≤ C‖f‖Lp(D)

where the constant C does not depend on how smooth A(x) is?.



Two illustrations of the Aleksandrov estimate
1. Uniformly elliptic operators with rough coefficients

Suppose D is convex and u : D → R is such that

tr(A(x)D2u) ≤ f in D, u ≥ 0 on ∂D.

Then, the Aleksandrov-Bakelman-Pucci estimate says

‖u−‖∞ ≤ Cdλ−1|D|
1
d ‖f‖Ld(Γu)

Here, Γu := {x | u(x) = hu(x)}, hu := convex envelope of u.



Two illustrations of the Aleksandrov estimate
1. Uniformly elliptic operators with rough coefficients

This estimate relies on the Aleksandrov estimate!



Two illustrations of the Aleksandrov estimate
1. Uniformly elliptic operators with rough coefficients

A key geometric fact about h is that

det(D2h) = 0 in {u > h}

Therefore, by the Aleksandrov estimate

‖u−‖dL∞ ≤ Cd|D|
∫

Γu

det(D2h) dx



Two illustrations of the Aleksandrov estimate
1. Uniformly elliptic operators with rough coefficients

We now use an important property of the determinant

det(M)
1
d = min

{
1
dtr(BM) | where B > 0 and det(B) = 1

}
Applying this to M = D2h and B = det(A)−

1
dA,

det(D2h) ≤ 1
dd

det(A)−1
(
tr(AD2h)

)d



Two illustrations of the Aleksandrov estimate
1. Uniformly elliptic operators with rough coefficients

In the set Γu = {u = h} we have

0 ≤ tr(AD2h) ≤ tr(AD2u) ≤ f(x)

Then,

det(D2h) ≤ 1
ddλd

f(x)d in Γu

∫
D

det(D2h) dx =

∫
Γu

det(D2h) dx ≤ 1
ddλd

∫
Γu

f(x)d dx



Two illustrations of the Aleksandrov estimate
1. Uniformly elliptic operators with rough coefficients

Putting everything together, we arrive at

‖u−‖L∞(D) ≤ 1
dλCd|D|

1
d

(∫
Γu

f(x)d dx

)1
d



Two illustrations of the Aleksandrov estimate
1. Uniformly elliptic operators with rough coefficients

A key ingredient in the ABP is the gradient map

x 7→ ∇u(x)

the image of which controls ‖u‖∞, and whose Jacobian in turn
can be estimated in terms of

tr(A(x)D2u)

and this was thanks to the extremal nature of the determinant

det(M)1/d = inf{1
dtr(BM) | B > 0 and det(B) = 1}



Two illustrations of the Aleksandrov estimate
2.C1,α theory for the real Monge-Ampère equation

Consider D and u : D → R convex, such that

λ ≤ det(D2u) ≤ Λ

for two constants λ,Λ > 0.

This equation we will understand in a weak sense, namely

λ|E| ≤ |∂u(E)| ≤ Λ|E|

for any Borel set E ⊂ D.



Two illustrations of the Aleksandrov estimate
2.C1,α theory for the real Monge-Ampère equation

Theorem (Caffarelli)

If u is as above, and ∂u(D) is convex, then u is strictly convex
and C1,α in the interior of D.

The proof relies on studying the shape of the convex sets

Sr(x0) = {u(x) ≤ `x0(x) + r}

where `x0(x) = u(x0) + p · (x− x0) and p ∈ ∂u(x0).



Two illustrations of the Aleksandrov estimate
2.C1,α theory for the real Monge-Ampère equation

Theorem (Caffarelli)

The eccentricity of the convex sets Sh(x0) is controlled as h→ 0



Two illustrations of the Aleksandrov estimate
2.C1,α theory for the real Monge-Ampère equation

(A, shall we say, impressionistic overview of the proof)

The Aleksandrov estimate says

r ≤ Cd|Sr(x0)|
1
d |∇u(Sr(x0)|

1
d

Using that det(D2u) ≤ Λ (in the weak sense)

r ≤ CdΛ
1
d |Sr(x0)|

2
d



Two illustrations of the Aleksandrov estimate
2.C1,α theory for the real Monge-Ampère equation

(A, shall we say, impressionistic overview of the proof)

The Aleksandrov estimate says

r ≤ Cd|Sr(x0)|
1
d |∇u(Sr(x0)|

1
d

Using that det(D2u) ≤ Λ (in the weak sense)

r ≤ CdΛ
1
d |Sr(x0)|

2
d



Two illustrations of the Aleksandrov estimate
2.C1,α theory for the real Monge-Ampère equation

(A, shall we say, impressionistic overview of the proof)

The Aleksandrov estimate says

r ≤ Cd|Sr(x0)|
1
d |∇u(Sr(x0)|

1
d

Using that det(D2u) ≤ Λ (in the weak sense)

r ≤ CdΛ
1
d |Sr(x0)|

2
d



Two illustrations of the Aleksandrov estimate
2.C1,α theory for the real Monge-Ampère equation

(A, shall we say, impressionistic overview of the proof)

The Aleksandrov estimate says

r ≤ Cd`(x0, Sr)|Sr(x0)|
1
d |∇u(Sr(x0)|

1
d

Using that det(D2u) ≤ Λ (in the weak sense)

r ≤ Cd`(x0, Sr)Λ
1
d |Sr(x0)|

2
d



Two illustrations of the Aleksandrov estimate
2.C1,α theory for the real Monge-Ampère equation

(A, shall we say, impressionistic overview of the proof)

Using det(D2u) ≥ λ one shows r ≥ Cdλ
1
d |Sr(x0)|

2
d . These

estimates combine to give a lower bound on

`(x0, Sr)

from where the “eccentricity” of Sr(x0) can be controlled.



3. Theories that could use an Aleksandrov-type estimate



Theories that could use an Aleksandrov-type estimate

Hamilton-Jacobi-Bellman-Isaac equations

I(u, x) = 0

Complex Monge-Ampère equation

det

(
∂2u

∂zj ∂̄k

)
= f

Prescribed σk-equation

σk(D
2u) = f



Theories that could use an Aleksandrov-type estimate

Hamilton-Jacobi-Bellman-Isaac equations

I(u, x) = 0



Theories that could use an Aleksandrov-type estimate

Complex Monge-Ampère equation

det

(
∂2u

∂zj ∂̄k

)
= f



Theories that could use an Aleksandrov-type estimate

An open problem
Prove an estimate of the type

‖∇u‖Cα(B1/2) ≤ C(‖u‖∞, λ,Λ)

for a plurisubharmonic u : B1(⊂ Cn)→ R solving

det

(
∂2u

∂zj ∂̄k

)
= f, λ ≤ f ≤ Λ



4. New Aleksandrov-type estimates



New Aleksandrov-type estimates
In optimal transport

The Monge-Kantorovich optimal transport problem consists on
minimizing

inf

{∫
M
c(x, T (x)) dµ(x) | T#µ = ν

}
where µ, ν are given probability measures in M .

An important result of Brenier (M = Rd) and Gangbo-McCann
(general M) roughly says that if ν << dVolM then the above
problem has a minimizer T , given by

T (x) = expcx(∇u(x)), u : M → R c-convex



New Aleksandrov-type estimates
In optimal transport

The potential function u solves a Monge-Ampère type equation

det(∇2u+Ac(x,∇u(x))) = ψc(x,∇u(x))

A fundamental object is a tensor, discovered by
Ma-Trudinger-Wang, which governs the smoothness of solutions
to the above equation.



New Aleksandrov-type estimates
In optimal transport

Theorem (with Jun Kitagawa, 2014)

Let c be a cost function satisfying the A3w condition of
Ma-Trudinger-Wang.

If u : D → R, D ⊂M is c-convex with u = φ on ∂D, where
φ(x) = −c(x, y0) + α for some y0 ∈M and α ∈ R, then

(u(x)− φ(x))− ≤ C`(x,D)|D|
1
d |∂cu(D)|

1
d

where ` is a function such that `(x,D)→ 0 as x→ ∂D.

A similar estimate was obtained by Figalli, Kim, and McCann
(2013) using different methods.

Later (2019) with Kitagawa we extended this to G-convex
functions (Trudinger’s Generated Jacobian Equations).



New Aleksandrov-type estimates
In optimal transport

Theorem (with Jun Kitagawa, 2014)

Let c be a cost function satisfying the A3w condition of
Ma-Trudinger-Wang.

If u : D → R, D ⊂M is c-convex with u = φ on ∂D, where
φ(x) = −c(x, y0) + α for some y0 ∈M and α ∈ R, then

(u(x)− φ(x))− ≤ C`(x,D)|D|
1
d |∂cu(D)|

1
d

where ` is a function such that `(x,D)→ 0 as x→ ∂D.

A similar estimate was obtained by Figalli, Kim, and McCann
(2013) using different methods.

Later (2019) with Kitagawa we extended this to G-convex
functions (Trudinger’s Generated Jacobian Equations).



New Aleksandrov-type estimates
In optimal transport

These pointwise estimates are essential in the regularity theory
for OT maps with bounded densities, as done in works by
Figalli, Kim, and McCann, and in works by G.-Kitagawa.



New Aleksandrov-type estimates
In non-local equations

Moving on, let us talk about nonlocal elliptic equations.

Essentially, all nonlocal elliptic operators are of the form

Lu(x) =

∫
Rd
u(x+ h)− u(x)−∇u(x) · h dνx(h)

(at least the linear ones)

For every x, νx is a Lévy measure, i.e. νx ≥ 0 and

sup
x

∫
Rd

min{1, |h|2} νx(dh) <∞



New Aleksandrov-type estimates
In non-local equations

u : Rd → R

(−∆)
α
2 u(x) = p.v.

∫
Rd

(u(x+ h)− u(x))Cd,α|h|−d−α dh

{
(−∆)

α
2 u = f in D
u = 0 in Rd \D

Then, for every p > 2d/α,

‖u‖L∞(D) ≤ C(D, p)‖f‖Lp(D)



New Aleksandrov-type estimates
In non-local equations

Fix a nonlocal elliptic opeator L

Lu(x) =

∫
δxu(h) dνx(h)

Let u be a solution of{
Lu = f in D
u = 0 in Rd \D

Problem: Under what circumstances do we know that

‖u‖L∞(D) ≤ C‖f‖Lp(D)



New Aleksandrov-type estimates
In non-local equations

Cafarelli-Silvestre (2009): Consider an operator of the form

Lu =

∫
Rd
δxu(h)

a(h, h)

|h|d+α
dh, λ ≤ a(x, h) ≤ Λ

a(x, h) = a(x,−h)

Then, given Lu ≤ f in B1 and u ≥ 0 in Rd \B1

‖u−‖L∞(D) .d,λ,Λ

∑
j

‖f‖dL∞(Qj)
|Qj |

 1
d

where Qj is a special family of cubes covering of the set Γu.



New Aleksandrov-type estimates
In non-local equations

Lastly, we recall the result with Schwab (2012): Consider an
operator of the form

Lu =

∫
Rd
δxu(h)

(A(x)ĥ, ĥ)

|h|d+α
dh, tr(A(x)) ≥ λ

Then,

‖u‖L∞(D) ≤ C‖f‖
1−α2
L∞({u=Γα,u)})‖f‖

α
2

Ld({u=Γα,u)})

where C = C(d, λ, α,D).



5. A non-local Jacobian equation



A non-local Jacobian equation

To every continuous, bounded u : Rd → R we associate a map,

Gu : Rd → C0
∗ (Rd) := {φ ∈ C0(Rd) | φ(0) = 0}

defined by

Gu(x)(y) = u(x+ y)− u(x), ∀ y ∈ Rd

This map is a kind of generalized gradient map.

For a generic smooth u, the image Gu(Rd) is a d-dimensional
manifold living inside C0

∗ (Rd)



A non-local Jacobian equation

The derivative of Gu at some x corresponds to the vector field

h 7→ ∇u(x+ h)−∇u(x),

in the sense that given e ∈ (TRd)x we have

(DGu)xe = (∇u(x+ h)−∇u(x), e)

In particular, a general linear functional ` of DGu has the form∫
Rd
∇u(x+ h)−∇u(x) · dν(h)

where ν is a vector measure.



A non-local Jacobian equation

Lemma

Given a Lévy operator,

L(u, x) =

∫
Rd
δxu(y) ν(dy)

There is a linear functional ` over the space of operators
Rd 7→ C0

∗ (Rd) such that

L(u, x) = `((DGu)x)

In such a case, we shall say ` is a positive functional.



A non-local Jacobian equation

A rough idea of the proof



A non-local Jacobian equation

Given D ⊂ Rd, the d-dimensional Hausdorff measure of the
manifold Gu(D) is equal to∫

D
J((DGu)x) dx

here, J(M) denotes the Jacobian

J(M) :=

(
1

ωd

∫
Sd−1

‖Mx‖−dX dσ(x)

)−1

defined for any linear map M : Rd → C0
∗ (Rd).



A non-local Jacobian equation

Question:
Is there a result akin to Aleksandrov’s estimate for convex
functions that involves the integral∫

D
J(DGu(x)) dx ?



Thank you!

Comments / Questions / Suggestions
nestor@txstate.edu


