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1.The basic idea



The basic idea

Consider the two-phase free boundary problem

�� = 0 in {� > 0}
�� = 0 in {� < 0}
V = G(@+

⌫ �, @
�
⌫ �) on @{� > 0}

Posed on the strip Rd ⇥ [0, L] = {(x, y) | 0  y  L} with

� ⌘ 1 on {y = 0}, � ⌘ �1 on {y = L}.
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The basic idea

Theorem (with Chang-Lara and Schwab, 2019)
Consider an initial data �0 where

{�0 = 0} = { graph of u0}

u0 a continuous function. There is a unique weak solution
starting from �0 and defined for all t > 0 whose interface is the
graph of a continuous function u(x, t).
I



The basic idea

This theorem will result from the observation that u(x, t) solves

@tu = I(u)

where I is a degenerate elliptic operator
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The basic idea

What does this mean?
The free boundary problem is equivalent to @tu = I(u), an
equation amenable to treatment by non-divergence methods
(i.e. comparison/barrier arguments and Krylov-Safonov theory)

Think for instance of equations of the form

@tu = u�u+ |ru|2

@tu = div(|ru|p�2ru)

@tu = max
↵

{tr(A↵D
2u)}

but more integro-di↵erential!
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The basic idea

. . .“more integro-di↵erential” would be for instance

@tu = �
�
2 u, � 2 [0, 2]

@tu = max
↵

⇢Z

Rd
�hu(x)K↵(x, h) dh

�

@tu =

Z

Rd
F (u(x+ h)� u(x), h) dh

Here K↵ � 0 for all ↵, F is increasing with its first argument

These are instances of Hamilton-Jacobi-Bellman equations
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The basic idea

(Global Comparison Property)
If u  v for all x and u = v at x0, then

I(u)  I(v)

(Perturbation under smooth bump functions)
Let u lie in some fixed compact set.
Then, given " > 0 there is R > 0 such that

I(u+ C + h�R, x) < I(u, x) + ", 8 C, h > 0

Here, �R(x) = �(x/R) and �(x) = |x|2/(1 + |x|2)
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The basic idea

Under these circumstances, the Comparison Principle holds.

Let u, v : Rd ⇥ [0,1) ! R be bounded, continuous, and

@tu  I(u) and @tv � I(v)

If u(x, 0)  v(x, 0) for all x, then u(x, t)  v(x, t) for all x, t > 0.
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The basic idea

(Here is a romantic proof of how this goes)

If u� v > 0 at some t > 0, one may choose C, h > 0 such that

b(x, t) := C + h�R(x) + "t

touches u� v from above at some (x0, t0).
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The basic idea

(Here is a romantic proof of how this goes)

If u� v > 0 at some t > 0, one may choose C, h > 0 such that

b(x, t) := C + h�R(x) + "t

touches u� v from above at some (x0, t0).
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The basic idea

Equivalently, v + b touches u from above at (x0, t0). Then,

@tu � @t(v + b) and I(u)  I(v + b) at (x0, t0).

It follows that @t(v + b) � I(v + b) at (x0, t0). However!

@t(v + b) = @tv + "

I(v + b) < I(v) + "

In contradiction with @tv  I(v) eveywhere. ⇤

Proprh 2 I Vt Ct h n C ICU c Eh

U Ev it too



2.Examples of Interfacial Darcy Flows



Interfacial Darcy Flows

The term Interfacial Darcy Flows was introduced by Ambrose
to describe a rich family of models combining these two features:

1. An incompressible flow v satisfying Darcy’s law

v = �Kr�

2. An interface evolving along with the flow, meaning

div(Kr�) = 0 away from �

+ some conditions for �, V on �



Interfacial Darcy Flows

In these flows the interface velocity V is determined by �, and �
is determined by �.

Naturally, this means � evolves according to a nonlocal process.
This allows for their treatment as an abstract evolution
equation for �. Several well-posedness theories, local and
global, have been developed through this philosophy



Interfacial Darcy Flows

Hele-Shaw cell Porous media flow
(2D) (3D)

v(x) = � b2

12µ
r(p(x) + �gxd+1) v(x) = �

µ
r(p(x) + �gxd+1)

i
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Interfacial Darcy Flows

Example 1: The Muskat Problem for two immiscible fluids

div(v) = 0

v(x) = � 

µi
r(p(x) + �igxd+1) in ⌦i

Define � in both phases via �(x) = p+ �igxd+1, then

�, @⌫� continuous across �
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Interfacial Darcy Flows

Example 1: The Muskat Problem for two immiscible fluids

Take d = 2.
If a solution is such that for some time interval we have

� = {(x, y) 2 R3 : y = u(x, t)}

then we know (Gancedo and Córdoba, 2007) that u(x, t) solves

@tu = c

Z

R2

(ru(x)�ru(x� y)) · y
(|y|2 + (u(x)� u(x� y))2)

3
2

dy

This representation clarifies the parabolic nature of the system.
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Interfacial Darcy Flows

Example 2.1: The Stefan problem

Let "0 > 0, we consider the problem

"0@t� = �� in {� > 0} [ {� < 0}
V = [@⌫�] on � = @{� > 0}.

where [@⌫�] = @+
⌫ �� @�

⌫ �, the jump in the normal derivative.

This is a very di↵erent free boundary condition since @⌫� will
generally be discontinuous across �.
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Interfacial Darcy Flows

Example 2.2: The (quasistatic) Stefan problem ("0 ! 0)

�� = 0 in {� > 0} [ {� < 0}
V = [@⌫�] on � = @{� > 0}.

This is the same model as earlier in the talk and the main
example we will have in mind.



Interfacial Darcy Flows

Example 3: One phase Hele-Shaw

Sa↵man and Taylor (ca. 1958): in the Hele-Shaw cell assume

• gravity is negligible

• one of the fluids has negligible viscosity

Then in the remaining phase we have

�� = 0 in ⌦

� = 0 in �

V = @⌫� on �



Interfacial Darcy Flows

Example 3: One phase Hele-Shaw

This flow appears in too many places to list here properly!

Here is e.g. one more such instance:
Consider the Porous Medium Equation for m >> 1

@tpm = (m� 1)p�pm + |rpm|2.

As m ! 1, pm converges to a solution of one phase Hele-Shaw

This limit arises (with some additional terms) in mechanical
models of tumor growth (Perthame, Vázquez, Quiros, 2014)
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Interfacial Darcy Flows

Example 3: One phase Hele-Shaw

This flow appears in too many places to list here properly!

Here is e.g. one more such instance:
Consider the Porous Medium Equation for m >> 1

@tpm = (m� 1)p�pm + |rpm|2.

As m ! 1, pm converges to a solution of one phase Hele-Shaw

This limit arises (with some additional terms) in mechanical
models of tumor growth (Perthame, Vázquez, Quiros, 2014)
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Interfacial Darcy Flows

Example 3: One phase Hele-Shaw

The theory for the one-phase Hele-Shaw problem is significantly
more developed, both theories of solutions as well as regularity

For a small (and highly biased) sample:

Persistence of Lipschitz regularity (King, Lacey, Vázquez 1995)

Phase field limit (Chen and Caginalp 1998, among others!)

Viscosity solutions à la Ca↵arelli-Vázquez (Kim, 2003)

Flatness implies smoothness (Kim, Choi, and Jerison 2007)



Interfacial Darcy Flows

Example 4: Prandtl-Batchelor flow

This vortex path model leads to the equilibrium problem

�� = 0 in {� > 0}
�� = 1 in {� < 0}

V = 0 = G(@+
⌫ �, @

�
⌫ �) on � = @{� > 0}.

where G(a, b) = a2 � b2 � 1.

The resulting HJB equation is naturally posed on the sphere,
the corresponding theory was developed by Reshma Menon in
her doctoral dissertation (2020).



Interfacial Darcy Flows

A map of asymptotic limits (Chen and Caginalp, 1998)



3.The free boundary operator



The free boundary operator

All of these equations can be posed, at least for some time, as

@tu = I(u)

In essentially all the examples the resulting equation in closely
connected to the fractional heat equation @tu+ (��)

1
2u = 0,

and this in turn led to the development of several well
posedness theories.



The free boundary operator

For the rest of this talk we focus on the original free boundary
problem, henceforth denoted FBP:

�� = 0 in {� > 0}
�� = 0 in {� < 0}
V = @+

⌫ �� @�
⌫ � on � = @{� > 0}

which we recalled was posed on the strip Rd ⇥ [0, L].

1



The free boundary operator

Recall also the FBP is posed in the horizontal strip {0  y  L}

� ⌘ 1 on {y = 0} and � ⌘ �1 and {y = L}.

The initial interface is given by a continuous u0 such that

0 < �  u0(x)  L� � for all x.



The free boundary operator

Consider the mapping

u 7! �

determing the scalar field � from “the interface” u.

Define the sets

D+
u = {(x, y) 2 Rd+1 | 0 < y < u(x)}

D�
u = {(x, y) 2 Rd+1 | u(x) < y < L}



The free boundary operator

Given u, we let �f be the unique solution to

�� = 0 in D+
u [D�

u

� = 1 in {y = 0}
� = 0 in {y = u(x)} =: �u

� = �1 in {y = L}.

i
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The free boundary operator

Then, let us define the free boundary operator

I(u, x) :=
G(@+

⌫ �u, @�
⌫ �u)p

1 + |ru(x)|2

where @±
⌫ � is evaluated at (x, u(x)).

The quantity I(u, x) is simply the vertical component of the
interface velocity, meaning that

@tu = I(u, x)

HE
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The free boundary operator

Solving the FBP amounts to solving the Cauchy problem

⇢
@tu = I(u, x) in Rd ⇥ (0,1)
u = u0 at t = 0

Now, we recall the theorem stated at the beginning.

Theorem

There is a unique weak solution u(x, t) to the Cauchy problem
and the comparison principle holds. In particular, any spatial
modulus of continuity of u is propagated forward in time.



The free boundary operator

Proposition

The free boundary operator I has the Global Comparison
Property (GCP). Namely, if u, v are two smooth functions such
that u  v in Rd and u = v at x0, then I(u, x0)  I(v, x0).
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The free boundary operator

Another example

In the Muskat problem, one has the alternative expression

I(u, x) = c

Z

R2

u(x+ h)� u(x)�ru(x) · h
(|h|2 + (u(x+ h)� u(x))2)

3
2

dh

Let u and v be two functions with Lipschitz norm  1.
Suppose v touches u from above at x0, then

I(u, x0)  I(v, x0).

From here follows the propagatation of Lipschitz norms  1,
from where higher regularity follows (see work of S. Cameron).

Qu C KH DU Ff
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The free boundary operator

It remains to show the second property for I, namely:

Let u lie in some fixed compact set.
Then, given " > 0 there is R > 0 such that

I(u+ C + h�R, x) < I(u, x) + "h, 8 C, h > 0

Here, �R(x) = �(x/R) and �(x) = |x|2/(1 + |x|2)
0



The free boundary operator

Proving this is not as straightforward as the first property!

Let us show it for I = �
↵
2 . By linearity, this reduces to:

Given " > 0 there is R > 0 such that

�
↵
2 �R  ".

This in turn follows from |�h�R(x)|  CR�2|h|2 for all h 2 Rd.
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4.The GCP and Lévy operators



The GCP and Lévy operators

In the 1960’s, Courrège considered linear operators

L : C2
b (Rd) ! C0

b (Rd)

and showed that if L has the GCP then it has the form

c(x)f(x) + b(x) ·rf(x) + tr(A(x)D2f(x)) +

Z

Rd
�hf(x) ⌫(x, dh)

drifting
dm Tupper



The GCP and Lévy operators

Here, for the sake of concise notation, we are writing
Z

Rd
�hf(x) ⌫(x, dh)

where

�hf(x) := f(x+ h)� f(x)� �B1(h)rf(x) · h

For each x, ⌫(x, dh) is a Lévy measure, meaning that

Z

Rd
min{1, |h|2}⌫(x, dh) < 1



The GCP and Lévy operators

In a previous work with Schwab (2019), we extended Courrège’s
result to nonlinear operators

I(u, x) = min
↵

max
�

{f↵� + L↵�(f, x)}

where, for every ↵ and � we have

L↵�(f, x) = c↵�f(x) + b↵� ·rf(x) +

Z

Rd
�hf(x) ⌫↵�(dh)
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The GCP and Lévy operators

Using the min-max representation, the second property follows
relatively easily, since

I(u+ C + h�R, x)  I(u, x) + sup
↵�

L↵�(C + h�R, x)

and all of the terms L↵�(·) can be estimated as done with the
fractional Laplacian

i



5.Regularity questions



Regularity questions

Problem

Show if f0 is Lipschitz, then f(x, t) is smooth for every t > 0.
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Regularity questions

This point is illustrative of an important di↵erence between the
Muskat problem and our problem

Muskat:
Lipschitz: more di�cult! Lipschitz)smoothness: easier!

Two phase QS Stefan:
Lipschitz: easier! Lipschitz)smoothness: more di�cult!
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Regularity questions

For the FBP, Abedin and Schwab (2020) proved the following:

If f(x, t) has a spatial gradient which is Dini continuous for
every t, then f is C1,↵



Limitations of the framework and future work



Limitations of the framework and future work

Equations with variable coe�cients, well-posedness?
(Potentially useful for studying problems in heterogeneous
media)

What happens if f is Lipschitz?
(This requires understanding the Lévy measures arising in the
min-max representation)

What about the Stefan problem?
(One could develop a similar theory, but now you are dealing
with nonlocal space-time operators)



Limitations of the framework and future work

Far more substantial limitations are:

Method disregards important divergence/variational structure

Handling surface tension (a nonlocal 3rd order equation)

Data at low regularity: what happens to singularities?



Thank you!

Comments / Questions / Suggestions
nestor@txstate.edu


