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Mappings between distributions

Many different questions in mathematics and applications hinge
on the following problem:

Given two probability distributions with densities f and g,

  
find a mapping T : Ω→ Ω̄ that sends f to g. . .

i.e.

∫
T (E)

g(y) dy =

∫
E
f(x) dx ∀ E ⊂ Ω



Mappings between distributions

Many different questions in mathematics and applications hinge
on the following problem:

Given two probability distributions with densities f and g,

  
find a mapping T : Ω→ Ω̄ that sends f to g where in addition
the map T is asked to satisfy some admissibility condition,
e.g. a monotonicity condition or some optimality property
(more on this in a second).



Mappings between distributions

If T is differentiable, the change of variables formula gives∫
E
f(x) dx =

∫
E
g(T (x)) det(DT (x)) dx, ∀ E ⊂ Ω.

Therefore, we get an equation for the Jacobian of T

det(DT (x)) =
f(x)

g(T (x))
.

Solving this equation is a way to find the mapping T .

What about the admissibility condition?



Mappings between distributions

The admissible mappings T must be of the form

T (x) = Tu(x) := F(x, u(x), Du(x))

for a scalar u : Ω→ R and a predetermined F : Ω×R×Rd → Ω.

With this structure, the problem amounts to finding u solving

det(DTu(x)) =
f(x)

g(Tu(x))
,



Mappings between distributions
The problem

Computing DTu we arrive at a partial differential equation for u

det(D2u+A(x, u,Du)) = ψ(x, u,Du)

for some symmetric matrix A and some positive function ψ.

This is a second order, elliptic, nonlinear PDE.

Problem: To construct smooth solutions to this PDE, under
appropriate boundary conditions.



Examples
1.Mappings with convex potentials

The most basic admissibility condition is T being monotone and
given by a gradient (a map with a “convex potential”).

A map T is monotone if (T (x1)− T (x2), x1 − x2) ≥ 0. If a
map is monotone and is given by the gradient of a scalar
function then this function must be convex.



Examples
1.Mappings with convex potentials

Thus T (x) = Du(x) for some convex function u.

The Jacobian equation is then the Monge-Ampère equation

det(D2u(x)) =
f(x)

g(Du(x))

which has been analyzed for over half a century.



Examples
2.Optimal Transportation

We are given a function c : Ω× Ω→ R representing a cost.

 
Namely, moving m units of mass from x to y costs mc(x, y).

Monge’s Optimal Transport Problem
Among all mappings sending f to g, minimize the total cost∫

Ω
c(x, T (x))f(x) dx



Examples
2.Optimal Transportation

The “Quadratic Euclidean Cost”, c(x, y) = |x− y|2.

This cost arises in fluid mechanics, metereology, probability,
and machine learning (keyword: Wasserstein distance).

The respective OT problem is equivalent to that maximizing

E[X · Y ]

i.e. for random vars X,Y what relation maximizes Cov(X,Y )?



Examples
2.Optimal Transportation

Theorem (Brennier 1992 and Gangbo-McCann 1996):
There is a unique optimal mapping T . It satisfies the equation

(Dxc)(x, T (x)) = Du(x)

for some scalar u enveloped by the cost function as follows

u(x) = max
y∈Ω
{−c(x, y) + v(y)} ,

for some v : Ω→ R.



Examples
2.Optimal Transportation

If (Dxc)(x, ·) has an inverse F(x, ·), then

(Dxc)(x, T (x)) = Du(x)⇔ T (x) = F(x,∇u(x)).

When c(x, y) = dg(x, y)2, with dg the geodesic distance w.r.t. to
a Riemannian metric g, the above reduces to

T (x) = expx(∇u(x))



Examples
2.Optimal Transportation

Differentiating the equation

(Dxc)(x, T (x)) = Du(x)

we see that the Jacobian equation takes the form

det(D2u+A(x,Du)) = ψ(x,Du).

This is sometimes called the c−Monge-Ampère equation.



Examples
3.Near-Field Reflector Problems

A distribution of collimated light beams is shot upwards, the
intensity of the light emanating from x is given by f(x)



Examples
3.Near-Field Reflector Problems

The beams reflect on an unknown surface Σ, and hit the ground.

The reflection happens according to Snell’s law.



Examples
3.Near-Field Reflector Problems

The intensity of the light hitting a point y is given by g(y),
representing the shape projected on the ground

Reflector Problem: given f and g determine Σ.



Examples
3.Near-Field Reflector Problems

To make the problem well posed, we ask Σ is the graph of a
function u which is an envelope of paraboloids

That is, u is a minimum of functions of the form

G(x, y, z) = 1
4z − z|x− y|

2

Such a paraboloid sends all light beams to the point y0.



Examples
3.Near-Field Reflector Problems

A simple computation shows that the light at x reaches
y = T (x), given by

T (x) = x+
2uDu

(1− |Du|2)

The resulting equation is

det

(
D2u+

(1− |Du|2)

2u
Id

)
=

1

(2u)n
(1− |Du|2)d+1

(1 + |Du|2)

f(x)

g(T (x))
.



Examples
Prescribed Jacobian Structure

In summary, all these examples have the following in common:

1. A gradient structure.

2. A convexity condition.

These are aspects of one object, a Generating Function.

These objects and their respective Jacobian equations have
been studied for decades, but it was only in 2014 when
Trudinger named them and set them up within a broad and
consistent framework.



Elements Of Generating Functions

A Generating Function is a smooth function

G : Ω× Ω× R→ R,

which, first, is strictly increasing in the third argument:

G(x, y, z) < G(x, y, z′) if z < z′.



Elements Of Generating Functions
The exponential

Second, G is assumed to satisfy a Nondegeneracy property:

Fix x ∈ Ω. Then for each p and u, the system of equations

(DxG)(x, y, z) = p, G(x, y, z) = u

has a unique solution (y, z), moreover the dependence of (y, z)
on (p, u) is differentiable.



Elements Of Generating Functions
The exponential

This defines a smooth map

expx,u : Dx,u ⊂ Rd → Ω,

which is known as the G-exponential map.



Elements Of Generating Functions
The exponential

Likewise we have a map

expy,z : Dy,z ⊂ Rd → Ω.

which is also referred to as the G-exponential map.



Elements Of Generating Functions
The exponential and G-segments

A curve y(s) is said to be a G-segment with respect to (x, u) if

y(s) = expGx,u(sv0 + (1− s)v1)

In other words G-segments are curves that look like straight
lines under the exponential map.



Elements Of Generating Functions
The examples revisited

Classical convex analysis:

G(x, y, z) = x · y − z

Optimal transport

G(x, y, z) = −c(x, y)− z

Parallel beam reflector

G(x, y, z) =
1

4z
− z|x− y|2



Elements Of Generating Functions
The Prescribed Jacobian Equation

Now, revisiting our admissibility condition, the types of
mappings we are looking are those of the form

Tu(x) = expGx,u(x)(Du(x))

for some scalar u and some Generating Function u.



Elements Of Generating Functions
The Prescribed Jacobian Equation

The Jacobian equation takes the general form,

det(D2u+A(x, u,Du)) = ψ(x, u,Du)

where A and ψ depend are computed from expGx,u.

This is called a Generated Jacobian Equation (GJE).



Elements Of Generating Functions
G-convex functions

The function u cannot be any scalar function. It must be
G-convex, that is, its graph must be of the form

u(x) ≥ G(x, y0, z0), ∀ x ∈ Ω,

u(x0) = G(x0, y0, z0).

We say y0 is supporting to u at x0.



Elements Of Generating Functions

We now define the subdifferential of a G-convex function

∂Gu(x0) = {y ∈ Ω | G(·, y, z) is supporting to u at x0}.

This is a multivalued map from Ω to Ω.

For a set E, we also consider its image under ∂Gu(E)

∂Gu(E) =
⋃
x∈E

∂Gu(x)



Elements Of Generating Functions

Finally, note that if u is smooth, ∂Gu(x) has a single element
(i.e. it is single-valued) and is given by

expGx,u(x)(Du(x)).

The key thing is that ∂Gu(x) is always well defined for a
G-convex function, even those which are not smooth.

Now we can revisit our main problem.



Elements Of Generating Functions

The main problem, revisited:
Find a map T sending f to g, where T is given in terms of a
G-convex function as just described.

Weak formulation:
A G-convex function is a weak solution of the GJE if∫

∂Gu(E)
g(y) dy =

∫
E
f(x) dx, ∀ E ⊂ Ω.

We emphasize that in this case the associated “mapping” Tu is
a priori not even a function! (it is potentially multivalued).



Elements Of Generating Functions

Theorem (Brenier, Gangbo-McCann, Trudinger)
There is always a weak solution!

The main problem, reformulated:
To determine, for a given G and densities f and g, whether a
weak solution u is smooth.



Main result
Tilting of G-functions

Fix x0, u0 and a G-segment y(t) respect to them, define

mt(x) = G(x, y(t), z(t)).

where z(t) is chosen so that G(x0, y(t), z(t)) = u0, thusly:

In words: mt is a family of G-functions with “focus” y moving
along a G-segment and such that mt(x0) = u0.



Main result
Assumptions

Property Q: There is some M ≥ 1 such that for any x ∈ S

f(t)− f(0) ≤Mt(f(1)− f(0))+, ∀ t ∈ [0, 1].

 
where with mt as before we have set f(t) := mt(x).



Main result

Theorem (Guillen-Kitagawa, 2017)

Let G satisfy the Q-condition, and

λ ≤ f, g ≤ Λ in Ω,Ω.

Then, for any weak solution u:

• The function u is C1,α
loc (Ω) for some α.

• The G-gradient map of u is Hölder continuous.
• The G-gradient map of u is injective.

Moreover, the estimates only depend on G, M , Λ, and λ.



Main result
Consequences

A first Corollary of this result is the smoothness of the
reflecting surface for near field reflector problems.

Theorem

The solutions to the parallel and point-source near field reflector
problems are smooth surfaces given by the graphs of C1,α

functions.



Main result
Consequences

The result also gives a new proof of an important theorem in
the theory of optimal transportation.

Theorem (Figalli-Kim-McCann ’13, Guillen-Kitagawa ’15)

For costs satisfying the A3 condition of Ma-Trudinger-Wang,
the unique (weak) optimal transport map is Hölder continuous
and injective.



Previous results
A very partial timeline

1991 1996

2005

2010

2017

Caffarelli 
Regularity for maps with convex potentials

Brenier 
Polar factorization theorem

Gangbo-McCann
Geometry of OT

Guillen-Kitagawa 
Regularity for GJEs

Ma-Trudinger-Wang 
MTW tensor is introduced

Figalli-Kim-Mcann
Regularity for OT

Loeper
Geometric meaning
of MTW tensor

Kochengin-Oliker 
Near-field reflector problem

Kim-McCann
Pseudo Riemannian view of OT

1992 1997

2009

2013

Trudinger
Elements of GJE 

2014
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Strategy
Sections of u

The approach is based on studying certain “level sets” of u.

If G(·, y0, z0) touches u from below at x0, define for h > 0

Sh = {u(x) ≤ G(x, y0, zh)} .

With zh chosen so that G(x0, y0, zh) = G(x0, y0, z0) + h.

If G(x, y0, z0) supports u at x0, Sh is called a section of u.



Strategy
How “round” is Sh? It depends on ∂Gu(Sh)!

Let us consider the graphs of three convex functions

How large is ∂u(S) in each case?

The key geometric fact:

larger h ⇒ larger |S| or larger |∂Gu(S)|



Strategy
The main tool in the proof

Theorem (Guillen-Kitawa)

The following estimate holds for any x ∈ S,

(G(x, y0, z0)− u(x))d ≤ Cdaff(x, ∂S)|S||∂Gu(S)|.

Moreover,

sup
x

(G(x, y0, z0)− u(x))d ≥ C|S||∂Gu(1
2S)|.

These are known as Aleksandrov type estimates, as they
generalized an estimate of Aleksandrov for classical convex
function.



Strategy

Pointwise estimates combined ⇒ graph of u can’t peak near ∂S.

Corollary
The function u is differentiable in the interior of Ω.



Strategy

A quantitative version of the argument yields C1,α estimates.

Corollary
The function u is C1,α in the interior of Ω, moreover

‖Du‖Cα(Ω′) ≤ C(G,Ω,Ω′,Ω, λ,Λ)

the constant α being determined from G, Λ, and λ.



Strategy

Why do the Aleksandrov-type pointwise estimates hold?!

Proving the inequality . . .

hd ≤ C|S||∂Gu(S)|

⇐⇒


. . . amounts to proving

∃ A ⊂ ∂Gu(S)

s.t. |A| ≥ C hd

|S| .

This is precisely where the Q-property comes in.



Strategy

S∗ :=

{
y ∈ Ω :

G(x0, y, zy) = u(x0), for some zy
G(x, y, zy) ≤ G(x, y0, zh) ∀ x ∈ S

}
It is not difficult to see that

S∗ ⊂ ∂Gu(S).



Strategy

Fix x ∈ S. Let y(t) be a G-segment w.r.t. (x0, u0) with

y(0) = y0, y(1) = y1 ∈ ∂Br(y0).

By the Q-property, we have

G(x, y(t), z(t))−G(x, y0, z0) ≤Mt (G(x, y1, z1)−G(x, y0, z0))

We have y(t) ∈ S if the LHS is ≤ ch for all x, so

y(t) ∈ S for t .
h

sup
x
{G(x, y1, z1)−G(x, y0, z0)}



Strategy

Since

sup
x
{G(x, y1, z1)−G(x, y0, z0)} ≤ Cd(x0,Π)

it follows S contains a G-segment of length at least

c0h

d(x0,Π)

in the direction from y0 to y1.



Future works

1. Minkowski problem in Riemannian manifolds.

2. Optimal partitions using Wasserstein distance.

3. Optimal transport methods in redistricting and political
geography.

4. For more on background of GJE and other applications, see
forthcoming Notices of the AMS survey later this year.



Thank You!

Questions and comments welcome!
nguillen@math.umass.edu


