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Warmup

Let us consider the absolute value function in Rp

u(x) =
√

(x, x) =
√
x2

1 + . . .+ x2
p

Evidently, u is differentiable in Rp \ {0} and

∇u(x) =
x

|x|
for x 6= 0



Warmup

What happens with this function for x = 0?

Two observations:
1) The function u is definitely not differentiable at x = 0

2) For every “slope” y ∈ Rp with |y| ≤ 1 we have

u(x) ≥ (x, y)

It would seem that any y ∈ B1(0) ⊂ Rp represents a tangent to
the graph of u at the origin.



Warmup

From these observations we see the following:

For any x ∈ Rp we have

u(x) = sup
y∈B1(0)

(x, y)

If x 6= 0 and y ∈ B1(0) is such that

u(x) = (x, y)

Then y has to be equal to x/|x|.



Warmup

Now, this function has a global minimum at x = 0.

What happens if we add a smooth function, say, a linear
function?

uy(x) = |x|+ (x, y), y ∈ Rp.

What happens to the global minimum?

If |y| < 1, the global minimum remains at x = 0.
As soon as |y| = 1, we start getting lots of minima.
For |y| > 1, there aren’t global minima at all.



A Rapid Course On Convex functions

In our early childhood, we were taught that a function f of the
real variable x is said to be convex in the interval [a, b] if

f(ty + (1− t)x) ≤ tf(y) + (1− t)f(x)

for all t ∈ [0, 1] and any x, y ∈ [a, b].

This definition extends in an obvious manner, to functions
defined in convex domains Ω ⊂ Rp for all dimensions p ≥ 1.



A Rapid Course On Convex functions

An alternative way of writing the convexity condition is

f(y)− f(x) ≥ f(x+ t(y − x))− f(x)

t

By letting t→ 0, it can be shown there is at least one number
m such that

f(y) ≥ f(x) +m(y − x) ∀ y ∈ [a, b]

This being for any x ∈ [a, b]. In other words, if f is convex, then
its graph has a tangent line at every point, touching from below.



A Rapid Course On Convex functions

Therefore, we arrive an equivalent formulation of convexity, one
in terms of envelopes: a function f : [a, b] 7→ R is said to be
convex if it can be expressed as

f(x) = max
m∈M

{mx− c(m)}

More generally, if Ω ⊂ Rp is a convex set, then f defined in Ω is
said to be convex if there is some set Ω̄ ⊂ Rp such that

f(x) = max
y∈Ω̄
{(x, y)− c(y)}

for some scalar function c(y) defined in Ω̄.



A Rapid Course On Convex functions

This leads to the notion of the Legendre dual of a function.

Given a function u : Ω 7→ R, it’s dual, denoted u∗, is defined by

u∗(y) = sup
x∈Ω
{(x, y)− u(x)}

Note: we are being purposefully vague about the domain of
definition for u∗(y), in principle, it is all of Rp, but if one wants
to avoid u∗(y) =∞ one may want to restrict to a smaller set,
depending on u.



A Rapid Course On Convex functions

One way then of saying a function is convex is that it must be
equal to the Legendre dual of its own Legendre dual

u(x) = sup
y
{(x, y)− u∗(y)}

A pair of convex functions u(x) and v(y) such that v = u∗ and
u = v∗ are said to be a Legendre pair.



A Rapid Course On Convex functions

If u(x) and v(y) are Legendre pairs, then we have what is
known as Young’s inequality

u(x) + v(y) ≥ (x, y) ∀ x, y ∈ Rp.



A Rapid Course On Convex functions

Example

Let u(x) = 1
a |x|

a, where a > 1. Let b be defined by the relation

1
a + 1

b = 1

(one says a is the dual exponent to b). Then, we have

u∗(y) = sup
x∈Rp

{
(x, y)− 1

a |x|
a
}

= 1
b |y|

b



A Rapid Course On Convex functions

Example (continued)

In this instance, Young’s inequality becomes

1
a |x|

a + 1
b |y|

b ≥ (x, y) ∀ x, y ∈ Rp.

For a = b = 2, this is nothing but the arithmetic-geometric
mean inequality

2(x, y) ≤ |x|2 + |y|2



A Rapid Course On Convex functions

Some nomenclature before going forward

We have seen a convex function is but an envelope of affine
functions (convex sets = intersection of half spaces).

An affine function `(x) is one of the form

`(x) = (x, y) + c

where c ∈ R and y ∈ Rp, the latter referred as the slope of `.



A Rapid Course On Convex functions
The Subdifferential

Let u : Ω 7→ R be a convex function, Ω ⊂ Rp a convex domain,
and x0 ∈ Ω0 (that is, x0 an interior point).

An affine function ` is said to be supporting to u at x0 if

u(x) ≥ `(x) for all x ∈ Ω

u(x0) = `(x0)



A Rapid Course On Convex functions
The Subdifferential

Let Ω be some convex set, and u : Ω 7→ R a convex function.

The subdifferential of u at x ∈ Ω is the set

∂u(x) = {slopes of `’s supporting to u at x}.

The following is a key fact: if u is convex in Ω, then

∂u(x) 6= ∅ ∀ x ∈ Ω



A Rapid Course On Convex functions
The Subdifferential

If u is not just convex, but also differentiable in Ω, then

∂u(x) = {∇u(x)} ∀ x ∈ Ω.

Thus, the set-valued function ∂u(x) generalizes the gradient to
convex, not necessarily smooth, functions.

We shall see ∂u(x) shares many properties with ∇u(x), with
the added bonus that ∂u(x) is defined even when u fails to be
differentiable.



A Rapid Course On Convex functions
The Subdifferential

Example

Let u(x) = |x| =
√

(x, x), then

∂u(0) = B1(0)



A Rapid Course On Convex functions
The Subdifferential

Example

Let u(x) = |x| =
√

(x, x), then

∂u(0) = B1(0)

Meanwhile, if x 6= 0, then ∂u(x) has a single element

∂u(x) =

{
x

|x|

}



A Rapid Course On Convex functions
The Subdifferential

Example

Let u(x) = |x| =
√

(x, x), then

∂u(0) = B1(0)

Meanwhile, if x 6= 0, then ∂u(x) has a single element

∂u(x) =

{
x

|x|

}



A Rapid Course On Convex functions
The Subdifferential

Further examples are given by any other norm.

Example

Let u(x) = ‖u‖ for some norm ‖ · ‖. We consider the unit ball
in this metric:

B
‖·‖
1 (0) := {x ∈ Rp | ‖x‖ ≤ 1}

Then u is convex and

∂u(0) = B
‖·‖
1 (0)

where ‖ · ‖∗ denotes the norm dual to ‖ · ‖.



A Rapid Course On Convex functions
The Subdifferential

A particularly interesting example is given by the `1-norm.

Example

Let u(x) = |x1|+ . . .+ |xp| then

∂u(0) = [−1, 1]d



A Rapid Course On Convex functions
The Subdifferential

A particularly interesting example is given by the `1-norm.

Example

Let u(x) = |x|`1 = |x1|+ . . .+ |xp| then

∂u(0) = [−1, 1]d = B`∞
1 (0)

Now, for instance, if x = (0, . . . , 0, xp), where xp 6= 0, then

∂u(x) = [−1, 1]× [−1, 1]× . . .× {sign(xp)}



A Rapid Course On Convex functions
The Subdifferential

A particularly interesting example is given by the `1-norm.

Example

Let u(x) = |x|`1 = |x1|+ . . .+ |xp| then

∂u(0) = [−1, 1]d = B`∞
1 (0)

Now, for instance, if x = (0, . . . , 0, xp), where xp 6= 0, then

∂u(x) = [−1, 1]× [−1, 1]× . . .× {sign(xp)}



A Rapid Course On Convex functions
The Subdifferential

A particularly interesting example is given by the `1-norm.

Example

Let u(x) = |x|`1 = |x1|+ . . .+ |xp| then

∂u(0) = [−1, 1]d = B`∞
1 (0)

Further, if x = (0, x2, . . . , xp), with xi 6= 0 for i 6= 1, then

∂u(x) = [−1, 1]× {sign(x2)} × . . .× {sign(xp)}



A Rapid Course On Convex functions
The Subdifferential

A particularly interesting example is given by the `1-norm.

Example

Let u(x) = |x|`1 = |x1|+ . . .+ |xp| then

∂u(0) = [−1, 1]d = B`∞
1 (0)

If all the xi are 6= 0, then

∂u(x) = {∇u(x)} = {sign(x)}

where, for x = (x1, . . . , xp), we already defined

sign(x) = (sign(x1), . . . , sign(xp))



A Rapid Course On Convex functions
The Subdifferential

Example
Lastly, consider

u(x) = u1(x) + u2(x)

where u1, u2 are convex and u1 differentiable for all x, then

∂u(x) = ∇u1(x) + ∂u2(x)

= {y | y = ∇u1(x) + y′ for some y′ ∈ ∂u2(x)}



A Rapid Course On Convex functions
The Subdifferential

Proposition

Let u : Ω 7→ R be convex in a convex domain Ω.

If x0 ∈ Ω0, the minimum of u is achieved at Ω if and only if

0 ∈ ∂u(x0).



A Rapid Course On Convex functions
The Subdifferential

Proof of the Proposition.

If u achieves it’s minimum at x0, then

u(x) ≥ u(x0) ∀ x ∈ Ω,

which means that 0 ∈ ∂u(x0), since 0 lies in the interior of Ω.

Conversely, if 0 ∈ ∂u(x0), then

u(x) ≥ u(x0) + (0, x− x0)

= u(x0) ∀ x ∈ Ω,

which means u achieves its minimum at x0.



A Rapid Course On Convex functions
The Subdifferential

Example

A good example for this proposition is given by functions of the
form u1 + u2 with u1 differentiable and u2(x) = λ|x|`2 or λ|x|`1 .

In the first case, ∂u(x) is given by

{∇u1(x) + λ
x

|x|
} if x 6= 0

B`2

λ (∇u1(0)) if x = 0.



A Rapid Course On Convex functions
The Subdifferential

Example

A good example for this proposition is given by functions of the
form u1 + u2 with u1 differentiable and u2(x) = λ|x|`2 or λ|x|`1 .

. . .while in second case,

{∇u1(x) + λsign(x)} if xi 6= 0 ∀i

B`1

λ (∇u1(0)) if x = 0.



The Lasso
The Least Absolute Shrinkage and Selection Operator

Let us return to the Lasso functional.

J(β) = 1
2 |Xβ − y|2 + λ|β|`1

Where X and y are the usual suspects, and λ > 0.
(assumed to be deterministic and centered)



The Lasso
The Least Absolute Shrinkage and Selection Operator

. . .Last class
We observed that for β’s such that βj 6= 0 ∀ j

∇|β|`1 = sign(β) := (sign(β1), . . . , sign(βp))

Then, for such β, we have

∇J(β) = Xt(Xβ − y) + λsign(β)

. . .which we led us to conclude
Trying to solve ∇J(β) = 0 is not as straightforward now as in
least squares! The resulting equation is not linear and
discontinuous whenever any of the βj vanishes.



The Lasso
The Least Absolute Shrinkage and Selection Operator

In light of the theory for convex functions, we conclude

β̂L is characterized by the condition 0 ∈ ∂J(β̂L)

This, in turn, becomes

−Xt(XβL − y) ∈ λ∂(‖ · ‖`1)(β̂L)

A good theoretical characterization, but still not enough to
compute β̂L in practice!.



The Lasso
The Least Absolute Shrinkage and Selection Operator

In light of the theory for convex functions, we conclude

β̂L is characterized by the condition 0 ∈ ∂J(β̂L)

This, in turn, becomes

−Xt(XβL − y) ∈ λ∂(‖ · ‖`1)(β̂L)

A good theoretical characterization, but still not enough to
compute β̂L in practice!.



The Lasso
The Least Absolute Shrinkage and Selection Operator

Example

Consider the case p = 1 and with data x1, . . . , xN such that

x2
1 + . . .+ x2

N = 1

Then, we consider the function of the real variable β

J(β) =
1

2

N∑
i=1

|xiβ − yi|2 + λ|β|



The Lasso
The Least Absolute Shrinkage and Selection Operator

Example

As it turns out, the minimizer for J(β) is given by

sign(β̂)(|β̂| − λ)+

where β̂ is the corresponding least squares solution

β̂ =

N∑
i=1

xiyi



The Lasso
The Least Absolute Shrinkage and Selection Operator

Example

Let us see why this is so. First, expand J(β)

J(β) =
1

2

N∑
i=1

(
x2
iβ

2 − 2βxiyi + y2
i

)
+ λ|β|

Differentiating, we have

J ′(β) =

{
β − (β̂ − λ) if β > 0

β − (β̂ + λ) if β < 0



The Lasso
The Least Absolute Shrinkage and Selection Operator

Example

If β̂ ∈ [−λ, λ], then

J ′(β) ≥ 0 if β > 0, J ′(β) ≤ 0 if β < 0

In which case, J is minimized by β = 0.



The Lasso
The Least Absolute Shrinkage and Selection Operator

Example

If β̂ 6∈∈ [−λ, λ], then, assuming that β̂ > 0

J ′(β) ≥ 0 if β > β̂ − λ, J ′(β) ≤ 0 if β < β̂ − λ, β 6= 0.

In other words, J is decreasing in (−∞, β̂ − λ) and increasing in
(β̂ − λ,+∞). Therefore, J is minimized at β̂ − λ.

If β̂ < 0, an analogous argument shows J is minimized at β̂ + λ.



The Lasso
The Least Absolute Shrinkage and Selection Operator

Example

There is popular, succint notation for this relation between β̂
and β̂L. If we define the “shrinking operator” of order λ,

Sλ(β) = sign(β)(|β| − λ)+

then β̂L = Sλ(β̂).



The Lasso
The Least Absolute Shrinkage and Selection Operator

What about p > 1? Let β = (β1, . . . , βp), we have

J(β) =
1

2

N∑
i=1

(yi − (xi, β))2 + λ|β|`1

Let us see that, at least if the inputs are orthogonal, things
are as simple as in one dimension.



The Lasso
The Least Absolute Shrinkage and Selection Operator

Let us expand the quadratic part

N∑
i=1


 N∑
j=1

xijβj

2

− 2

N∑
j=1

xijβjyi + y2
i


=

N∑
i=1

N∑
j=1

N∑
`=1

xijβjxi`β` − 2

N∑
i=1

N∑
j=1

xijβjyi +

N∑
i=1

y2
i

The inputs xi being orthogonal refers to the condition

N∑
i=1

xijxil = δj`



The Lasso
The Least Absolute Shrinkage and Selection Operator

Therefore, the quadratic part is

N∑
j=1

β2
j − 2

N∑
i=1

N∑
j=1

xijβjyi +

N∑
i=1

y2
i

and the full functional may be written as

N∑
j=1

{
1
2β

2
j − βj

(
N∑
i=1

xijyi

)
+ λ|βj |

}
+

N∑
i=1

y2
i



The Lasso
The Least Absolute Shrinkage and Selection Operator

By comparing

N∑
j=1

{
1
2β

2
j − βj

(
N∑
i=1

xijyi

)
+ λ|βj |

}
+

N∑
i=1

y2
i

with the expansion for the case p = 1,

J(β) =

(
N∑
i=1

x2
i

)
1
2β

2 − β

(
N∑
i=1

xiyi

)
+ λ|β|+

N∑
i=1

y2
i

We conclude that each βj is solving a one dimensional problem,
separate from all the other coefficients.



The Lasso
The Least Absolute Shrinkage and Selection Operator

Therefore, we see that the Lasso works, at least for orthogonal
data, according to

β̂L = Sλ(β̂)

where the muldimensional shrinking operator Sλ is defined by

Sλ(β) = (Sλ(β1), . . . ,Sλ(βp))



The Lasso
The Least Absolute Shrinkage and Selection Operator

The orthogonality assumption is, of course, too restrictive for
practical purposes. A change of variables to normalize XtX
is often problematic too.

Additionally, it is worth noting that `1 is not rotationally
invariant, so changing the Cartesian system of coordinates can
have dramatic effects on the outcome!.

As it turns out, however, the Lasso can be cast as a quadratic
optimization problem with linear constraints.



The Lasso
The Least Absolute Shrinkage and Selection Operator

The orthogonality assumption is, of course, too restrictive for
practical purposes. A change of variables to normalize XtX
is often problematic too.

Additionally, it is worth noting that `1 is not rotationally
invariant, so changing the Cartesian system of coordinates can
have dramatic effects on the outcome!.

As it turns out, however, the Lasso can be cast as a quadratic
optimization problem with linear constraints.



More on the Lasso, a bit on Dantzig
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The Lasso
The Least Absolute Shrinkage and Selection Operator

Originally (Tibshirani 1996)) the Lasso was set up as follows:

Fix t > 0. Then, under the constraint |β|`1 ≤ t, minimize

1

2

N∑
i=1

(yi − (xi, β))2

This is a convex optimization problem with finitely many linear
constraints. Indeed, the set of β’s such that |β|`1 ≤ t
corresponds to the intersection of a finite number of half-spaces.



The Lasso
The Least Absolute Shrinkage and Selection Operator

If t is sufficiently large, then this problem has the same solution
as standard least squares:

Let β̂ denote the usual least squares estimator. Then, trivially

|Xβ − y|2 ≥ |Xβ̂ − y|2 ∀ β ∈ Rp.

In particular, if t is such that

|β̂|`1 ≤ t

then, β̂L = β̂, the least squares and Lasso solutions coincide.



The Lasso
The Least Absolute Shrinkage and Selection Operator

If instead t is such that

|β̂|`1 > t

Then β̂L will be different, and will be such that |β̂L|`1 = t.



The Lasso
The Least Absolute Shrinkage and Selection Operator

This means that for β = β̂L there is λ > 0 such that

−∇1
2 |Xβ − y|2 ∈ λ∂u(β)

where u(β) = |β|`1 . See: Karush-Kuhn-Tucker conditions.

We see then, that the parameter λ seen in the first formulation
corresponds to a Lagrange multiplier in the second formulation.



The Lasso
Sparsity

Thinking in the Lasso formulation

Minimize
1

2

N∑
i=1

(yi − (xi, β))2 with the constraint |β|`1 ≤ t

Then, for p = 3, for instance, one sees that

β̂Lasso lies on a vertex = two zero components

β̂Lasso lies on an edge = one zero components

β̂Lasso lies on a face = no non-zero components



The Lasso
The Simplex Method and Coordinate Descent

The importance of the Lasso being a quadratic program with
finitely many linear constraints is that there it allows one to
apply the classical simplex method to approximate the
solution efficiently.

Another algorithm that is popular in practice (and the one used
by ML libraries for instance, in python) is the coordinate
descent algorithm, which in a sense reduces things to lots of
one dimensional problems.



The fourth week, in one slide

1. For convex functions, the subdifferential is a set valued
map which serves as a good replacement for the gradient
for non-differentiable functions.

2. The subdifferential yields the criterium 0 ∈ ∂J(β̂) for
global minimizers β̂ of a convex functional J (such as the
least squares or Lasso functional).

3. We learned that the outcome of the Lasso often reduces to
the application of a soft thresholding operator to the
standar least squares estimator.

4. The Lasso can be recast as a quadratic optimization
problem with finitely many constraints, making it
amenable to treatment via tools like the simplex method.


